Možnosti ovplyvnenia kvasenia muštu aktivátorom z Botrytis cinerea

Doc. Ing. ERICH MINÁRK, DrSc., Komplexný výskumný ústav vinohradnícky a vinársky, Bratislava

Aktivátor z A. niger nie je nikdy pre rast a fermentačnú aktivitu vinných kvasek nevyhnutný. Za jeho prítomnosti však značne vzrastá reprodukcia i fermentačná činnosť kvasek. Tým sa uvedený aktivátor líši od tzv. „aktivátorov Z“ von Euler, ktorý urýchľuje iba kvasenie bez toho, že by ovplyvnil aj rast kvasek.

Možnosť praktickej aplikácie sušeného praskovského mycelia A. niger obsahujúceho Nielsenov aktivátor pri výrobe vína uvažovali už francúzskych patentiach [1932a, 1943b, 1943c]. Ribéreau-Gayon a Pegnaud [1952] uviedli prvé skúsenosti z laboratórna i praxe z aplikáciou aktivátorov rôznych hýfovitých hôb.

Výskyt Nielsenovho aktivátor v myceliu Botrytis cinerea Persoon signalizoval v svojej dizertácií už La Fornace [1954], ktorá popísala aj prípravu a úpravu sušeného mycelia hoby. Minárik [1957a, 1957b] uviedol prvé skúsenosti s aplikáciou sušeného mycelia rôznych hýfovitých hôb pri výrobe prírodných hrozňových a ovocných vín a pri výrobe dezerťových a šumiacich vín. Náznačil tiež možnosti širšieho využívania sušeného mycelia B. cinerea pri intenzifikácii kvaseného procesu a urýchlení využívania hrozňových vín.

Experimétna časť

A. Priprava sušeného mycelia B. cinerea

Použil sa kmeň CBS 128,58,**) ktorý sa zbierkové udržuje na sladinkovom agáre pri teplovej miestnosti (Obr. 1). Kultivácia huby sa uskutočňuje povrchovým rastom na hrozňovom múšte za aerobných podmienok kultivácie. Máš obsahoval 210 g/l redukujúcich cukrov, pH 3,2 a 7,3 g/l celkových (titrovaných) kyselín. Kultiváčnej prostredia sa prípravilo zriadením koncentrovaného hrozňového múštu (väkuové teploty zahusteného hrozňového múštu) destilovanou vodou.

300 ml múštu sa odmeralo do 500 ml kúzelových [Erlemayerových] baniek, ktoré sa v 24h intervale sterilizovali dvakrát 30 min v prvéjia pare pri 100°C. Po vyhriadi sa múš zosnažovával vodou napriek závode 7—10 dňovú kultúru B. cinerea. Po 15 dňoch povrchovnej kultivácie pri 25°C sa rozrastnuté mycelium roztrhala, premýlo miňšokrát vodovodnou vodou za dôčelom eliminácie antibiotického substrátu typu „Botryticida“.

V céli sa potom sušil pri 35—38°C. Od dezodorácie suchého mycelia absolútneho alkoholu sa na základe predchádzajúcich skúseností mohlo upustiť (Minárik 1960).

Suché mycelium sa rozomeleno na jemný prášok. Preparát B. cinerea predstavuje vysokú amorfný prášok, takmer bez vôle, ktorý je vo vode môžo rozplyvať. Zloženie sušeného mycelia (hmotnosť %):

sušina	89,41
voda	10,59
celkový dusík	1,03
protein	1,43
popoľ	1,91
vodorozp. substancia	9,03

B. Kvasenie múšu s aktivátorom B. cinerea

Fermentácia prebiehala v 500 ml kvasných bankách...
uzavřených kvasnou trubicí naplněnou glycerolom. 300 ml muštu s cukrností 210 g/l redukujících cukrů se sterilizovalo dvakrát v 24 hodinové intervale, vždy 30 min. Při sledování reprodukční aktivity se použil muš s cukrností 245,5 a 368,8 g/l redukujících cukrů. Pro vychudnutí se do muštu dozvolilo 200, 300, 400 a 500 mg/l sušeného prípravku B. cinerea. Kontrolní vzorky kvasila bez aktivátoru. Kvasné testy se robily v dvoch opakovaních. Mušty se inkubovaly v 24—25°C. Denně se sledoval výdoby CO₂, dávek nového baník. Analýza skvášeného muštu se robila 30 dílně po zacukrání a založení pokusů. Počet kvasných buníků se v paralelních sériích stanovil Burkero- vou počítací komorkou.

C. Zhodnotení výsledků a diskusia

V tabuľke 1 vidíte příběh kvasenia muštu podle daného úbytku CO₂ jímé, že už jenžíš důvody prípravku (200 mg/l) veľmi výrazne a podstatne urýchlojujú začiatky i celkový příběh b kývavého kvasenia muštu. Napríklad v 2. dňa kvasenia bola priemerná produkcia CO₂ v muščích s aktivátorom 4,7 krát, m. d. 3,8 krát výchšia ako v kontrolnom mušte bez aktivátoru. Absolútny najrychlejšie kvasili mušty in 400 mg/l aktivačoru. Tento počet výrazne aj najvyšším produkci CO₂.

Tabuľka 1. Příbeh kvasenia

<table>
<thead>
<tr>
<th>Po dňoch</th>
<th>Kontrola</th>
<th>Aktivátor B. cinerea mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,10</td>
<td>0,30</td>
</tr>
<tr>
<td>2</td>
<td>2,05</td>
<td>8,75</td>
</tr>
<tr>
<td>3</td>
<td>4,80</td>
<td>16,10</td>
</tr>
<tr>
<td>4</td>
<td>9,50</td>
<td>25,45</td>
</tr>
<tr>
<td>5</td>
<td>13,30</td>
<td>27,50</td>
</tr>
<tr>
<td>6</td>
<td>15,80</td>
<td>31,20</td>
</tr>
<tr>
<td>7</td>
<td>18,60</td>
<td>32,60</td>
</tr>
<tr>
<td>8</td>
<td>22,20</td>
<td>35,40</td>
</tr>
<tr>
<td>9</td>
<td>25,30</td>
<td>38,20</td>
</tr>
<tr>
<td>10</td>
<td>27,30</td>
<td>40,30</td>
</tr>
</tbody>
</table>

Ako vysvietlá tabuľka 2, najviac alkoholu vzniklo v varovke s 300 mg/l prípravku (14,04 obj. %) a s 200 mg/l (13,95 obj. %). Produkcia alkoholu bola vo vysokom substante s aktivátorom o 1,75 až 2,10 obj. vyššia ako v substante bez aktivátoru, kde sa dosiahlo iba 11,94 obj. % alkoholu. Pozoruhodné boli rozdiely aj v obsahu neskvášeného cukru. Kym v kontrolnom víne zostalo po 30 dňoch kvasenia ešte 29,6 g/l (14,0 %) neskvášeného cukru, vo vínech s aktivátorom sa zaznamenali iba 4,5 až 4,7 g/l, t.j. 2,1 až 2,2 %.

Tabuľka 3. Počet buniek kvasinek v kvasiacom mušte (v mil./ml)

<table>
<thead>
<tr>
<th>Dňa kvasenia</th>
<th>Kontrola</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,5</td>
</tr>
<tr>
<td>3</td>
<td>41,5</td>
</tr>
<tr>
<td>6</td>
<td>59,0</td>
</tr>
<tr>
<td>13</td>
<td>64,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dňa kvasenia</th>
<th>B. cinerea 500 ml/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,5</td>
</tr>
<tr>
<td>3</td>
<td>41,5</td>
</tr>
<tr>
<td>6</td>
<td>59,0</td>
</tr>
<tr>
<td>13</td>
<td>64,0</td>
</tr>
</tbody>
</table>

Osobitne markantné rozdiely sa javili aj v obsahu prachavých kyselin (vyjadrených ako kyselina octová) v kontrolnom víne sa zistilo 0,96 g/l, vo vínech s aktivátorom iba 0,28 až 0,48 g/l, t.j. len 29,1 až 50 % obsahu prachavých kyselin. Hlavná titrovateľná kyselina (vyjadrených ako kyselina vinná) a hodnoty pH kontrolného vína i víb kvasených s aktivátorom bol prakticky rovnaký.

Počet buniek kvasinek v priebehu 13 dňa fermentácie muštu s cukrnostou 245,5 g/l (pokus A), resp. 368,8 g/l (pokus B) vidíte v tabuľke 3. V súvislosti s našou skoršími údaji (Minár 1978b) sa opět potvrdilo, že rozmanitost a schopnosť kvasinek je v muščoch s nižšou cukrnostou visť ako dvojnásobná pri prítomnosti aktivátoru v 3. až 6. dňa kvasenia. Aj pri vysoké cukrnosti muštu bola reprodukčná schopnost kvasinek s aktivátorom výrazne vyššia.

Dôležitým poznatokm, ktorý vyplýva z týchto pokusov, je skutočnosť, že aktivátor z B. cinerea neovplyvňuje prakticky chuť ani buket vína, čo sa ostatne dokázalo už dávno predtým (Minár 1981).

Hronový muš predstavuje kvasné prostredie s variabilným zložením v jednotlivých ročníkoch i podľa rôznych kultivarov. Je známe, že napríklad pôdoklady amonického dusíka môžu mať značný vliv na zloženie kvasenia v jednom ročníku, ktorého aj v dalsom nám nasmieši fermentáciu včasou vyplývovať, najmä ak sú podmienky technologické zrelih hrozne priznávac, teda keď bol muš dusískami látkami dobre zásobený. To platí ostatne aj pre vitamín B₁₂.

Aktivátor pôdou fyziových hôb môže do značnej miery kompenzovať nedostatok asimilovateľného dusíka i vitaminov. V každom prípade, aj za ich dostatku, vždy zabezpečuje podstatné urýchlenie začiatku i celého priebehu kvasenia, kompliešanie a racionálnejšie využívanie cukorov substácie bez ohľadu na ročník, vyzerieť hrozno a kvasné podmienky. Aktivita preparátu B. cinerea sa prejavuje pri minimálnej koncentracii, ak uvážime, že sorva 10 % aplikovanej substancie je rozpuštna, a teda alebo.

Praktické dôsledky pokusu nie sú zanedbané. Tretie muš na zrelé, že aktivátní substancie produkované B. cinerea sa vedza inhibíčnych látok typu botryticky vyskytujú vo botrytických hrozách, kde majú zrejme istý dôhový význam. V skorších a otýsmi aplikácie preparátu B. cinerea (Tokaj, Sauternes).

Aplikácia upraveného sušeného preparátu B. cinerea by teda mohlo kladne vyplývovať nielen kvasný proces, ale aj chemické zloženie hotových vína. V skorších aplikáciách preparátu B. cinerea by...
mohla důsledkem aktivity oxidácích enzýmů teče huby při přímé diffusion až do úplného zvětšení vznícených enzýmů na oxidativní technologii, například tokajských vyvěrů a samorůdních víní. Je to z důvodu toho, že by nebylo možné aktivátory z Botrytis cinerea nemalé naladěná na hygienické pochybnosti vzhledem na autochtonný charakter a pravděpodobně vyskytující se huby na hroznách. Bolo by aj myšlitelné širší použití aktivátoru v iných úsecích kvasnice technologie.

Litteráta

Za technické spolupráci autor děkuje s. Zuzane Silhárové, M. Petrušové a Alené Svančarové.

V laboratorních podmínkách se studoval vliv aktivátorů původu hynulé huby Botrytis cinerea na rychlost kvěsné a reprodukci štěpenci kvasnice Saccharomyces ovisporus a na zvětšení kváskového substrátu. Už v minimálních dávkách sušeného připraveného z muštu B. cinerea možné docílit pozoruhodné určené zvětšení celého procesu kvěšení, důležité využití cukru, vyšší obsah alkoholu a přiznivější zvětšení výkusu kváskového muštu. Možné technologické důsledky při výrobie kvěsného muštu jsou diskutovány.

The influence of the activator originating from the hyphal fungus Botrytis cinerea on the fermentation rate and reproduction ability of Saccharomyces ovisporus and on the composition of the fermented substrates have been examined in laboratory conditions. Already by minimal dose of the dried mycelium preparation of B. cinerea a remarkable acceleration of the fermentation start as well as of the whole fermentation course, more effective sugar utilization, higher alcohol content and a more favourable composition of the fermented grape must could be achieved. Possible technological conclusions in the production of natural sweet wines are discussed.
