Intenzifikace technologických procesů v polském pivovarství

Doc. Dr. WEADYSŁAW DYLKOWSKI, Instytut Przemysłu Fermentacyjnego, Warszawa

Podmínky, v nichž pracuje a rozvíjí se polský pivovarský průmysl v době po druhé světové válce, jsou dosti specifické a značně se liší od podmínek, v jakých pracoval v této době pivovarský průmysl v jiných zemích, které mají široce rozvinutou a dobře připravenou distribuční síť tohoto nápoje.

Polsko vyjíždí z období druhé světové války s obrovskými ztrátami na majetku, kde často jsou zahrnuty i pivovarské objekty a sítě distribuce piva a jiných nápojů. Vectora situace přikazovala používat takové politiky v pivovarském průmyslu, která směřovala k dosažení pokud možno vysokých ekonomických výsledků při použití co nejmenších investičních a ponechaných nákladů. Nedostatečné rozvinutá základna, vybavená v distribuční síti chladicím zařízením, nutila pivovary vyrábět pivo dostatečně trvanlivé. V tomto ohledu je kromě jiného v Polsku hlavním sortimentem pivo s obsahem alkoholu 12,5 °B, obsahující kolem 4% alkoholu. Také pivo se významně vyšší mikrobiologicky trvanlivostí ve srovnání s jinými pivem.

Úsporné vydávání finančních prostředků na výstavbu zničených objektů, modernizaci pracujících sladoven a pivovarů a na výstavbu nových zdrojů se stalo hneč silou zavádění intenzifikovaných technologických metod. Tyto metody byly však zavedeny po předchozím výzkumu a závěrečná účinnost při využití teoretických i praktických elementů.

Většina zavedených metod intenzifikujících technologické procesy ve sladovnách a pivovarech vznikla z výzkumů provedených v Česku pro kvasné pivovary vo Varšavě za spoluzpracování zainteresovaných podniků pivovarského průmyslu.

V informacích z oboru intenzifikace technologie ve sladovnách uvádím pouze největší problémy související s těmatem se zjistěním na tématiku, která může větší měrou zajišťovat čtenáře, pro kterého je určena toto práce.

Z oboru sladování zasahuje úvahy použití kyseliny giberelové a inhibitorů biochemických přeměn. Kyselina giberelová se používá ve sladovnách výhradně slad pro potřebu domácích pivovarů, a to ve sladovnách, které mají dostatečné výrobní kapacitu kvůli tomu. Tento stimulátor se používá v množství asi 0,1 mg/kg ječmene, což umožňuje kličení doby kličení 2 až 3 dny. Přípravku kyseliny giberelové používají některé sladovny od r. 1981, v kteréto dobo je uvedena v činnost výroba této sloučeniny polským farmaceutickým průmyslem.

Ke snížení ztrát sušiny ječmene při kličení, omezení intenzity bary laboratorní sladiny ze sladů s kyselinou giberelovou a nižšího štěpení škrobu při dodržení příslušného stupně rozslušení bříška byl zaveden v řadě sladování postup s použitím příslušných kyselin giberelové spolu s chloridem vápenatým prostředím sloučenin bary a bromidem draselným. Množství použitéch chemických sloučenin nepřekračuje u kyseliny giberelové 2 mg/kg ječmene, chloridu vápenatého 2 g/kg a bromidu draselného 0,05 g/kg. Výsledky provedených výzkumů ukazují, že kliček chloridu vápenatého spolu s bromidem draselným snižuje účinné dávky bromidu draselného.

Uvedený technologický postup skutečně zkracuje doby kličení ječmene, snižuje ztráty sušiny ječmene asi o 1 až 2% a zlepšuje jakost sladu. V podmínkách polských pivovarů, které mají největší zařízení k dispozici technologickou vodu se zvýšenou zbytkovou alkalitou, tedy vyhovující úpravou chemického sladování — zavedením vápná již v době sladování, příslušně dodatečné účinné, které vyplývá z urovnání enzymových procesů při rozkládání výzkumů v kontinuální formě při vyzkoušení není zjevně univerzálním řešením, avšak v řadě případů to stačí k dosažení správných technologických výsledků.

Kyselina giberelová a uvedené inhibitory biochemických přeměn se napouštějí při výrobě sladu na export,
který se dosud vyrábí klasickou metodou jak ve slovanských kuhinách, tak i v moderních závodech pneumatického typu.

V polských pivovarech se používá řada technologických metod, které značně zkracují výrobu piva ve sevonání s klasickým způsobem, který převáděl v prvních poválečných letech.

Ve většině 30 % pivovarů byly v posledních desetiletích instalovány štrovníky ke štrotování sladu za mokra. To umožnilo získat dalej jednu várku během dne ve dvoučtých výrobních, vybavených sonerovacími kády. Dnes je snaha zvážet i výhody zavedení teplárního a nevýhody tak častých oprav jako štrotování ke štrotování sladu za mokra.

Při rušení nastává v poslední době změny „zkrácením trvání tohoto procesu předem zmíněného počtu pivovarů v dvounormálu na jednoroznové s hustou výstupkovou příďí vzniklý enzymového preparátu mikrobiologického případu. Preparát se používá v závodech, nedostatku enzymového potenciálu, jednorazový postup je, kromě zkrácení procesu, vyšším méně náročným na energi.


Obr. 1. Schéma zařízení k varení sladiny pod tlakem, postavené v pivovaru ve Varšavě

1 - varný kotol, 2, 5, 7, 8 - potrubí na sladu, 3 - čerpadlo, 4 - regulaci ventil, 6 - trubkový zahřívač, 9 - akumulační sklopný, 10 - týrak.

Vypracována a prováděna bylo rovněž prototypové zařízení umožňující urychlit cyklus varení sladiny s cílem postup varení sladiny a tedy izomerace a-hořkých kyselin a denaturace blízkých — se provádí za varním kotlem při teplotě kolem 130 °C. Schéma zařízení instalovaného v pivovaru ve Varšavě je na obr. 1.

Trefačce tyto poslední metody se ještě zváží, čemuž se nelze divit, budou v nejbližších letech postupně zaváděny podle potřeby jednotlivých pivovarů.

Chlazení mladiny probíhá asi ve 40 % pivovarů v technologické linie s vířivou kádou typu Whirlpool. Osah těchto kádů neprůkracuje v principu 400 hl, a proto se dosáhne rychlé a dobré sedimentace hořkých kalů, takže je možno vyloučit samovypáračícího odstrčovadlo.

Kvašení se vede různě, se zřetelem na druhu piva a místení technické podmínky pivovaru. Používá se převážně klasický způsob kvašení, ve dvou pivovarech se používá tzv. metoda na úžitek odstranění části kvasnic z mladého piva sudovaného do ležáčkové sklepa a taková metoda na 0,2 až 0,07 Mpa, metoda kvašení v tančích spojenou a umístěnou na volném prostoru.

Obr. 2. Schéma spojení při tankář

1, 2, 3 - ležácké tanky, 4, 5 - vedení z kyselinovzdorné oceli, kterým probíhá kyselina uložená při kvašení, 6 - vedení k odvádění přebytečné kyseliny ubíráného, 7 - vypouštěcí ventil k přívozu tank, 8 - trubice zahrádějící vzduchou prostoru z pivovarů v prostorovém šehlíku, 9 - pivní kuchyňka, 10 - vyzvedněcí sektory, 11 - kohout k vypouštění kyseliny ubíráného.

Obr. 3. Schéma spojení dvou tanků

Všechny uvedené nové metody kvašení předpokládá intenzifikaci procesu. Je třeba, aby se změnila, že jedným z činitelů umožňujících a podmíňujících zvážení je intenzifikace metod prokvašování mladiny do průmyslové práce, byly práce, souvisící se charakteristikou kvasnic podle technologických vlastností s přihládnutím k surovinám používaným k připravě sladiny a technologickým podmínkám. Práce v tomtéž oboru byly
K Z PRŮmysL
roč. 26/1980 — číslo 4
Intenzifikace technologických procesů
v polském pivovarství

79

provádění řadu let a uskutečňovány postupně. Na základě této praxi byly vybrány kmeny kvasnic rychle zvětšujících, správně aglutinujících a sedimentujících i vytvrzujících nejméně vadných produktů, možněními Amylalcohol, acetónu a diacetylů.

K provádění tankového kvašení byly vybrány a adaptovány vhodné kmeny kvasnic. Dobré výsledky byly dosaženy např. použitím kvenků Brieisla a kvenků typu “S”, pocházejících ze Svejška, které byly zavedeny po válce v pivovaru v Gdaňsku.

Charakteristiku typu kvenků, hlavně na spodní kvašení, z hlediska technologických vlastností a vydaného katalogu, doplněného běžnými informacemi z tohoto úseku, je nutné základem k zavedení různých metod intenzifikujících postup kvašení způsobem technologických zásadně vytvořených a tedy bez újmy na jakosti konečného výrobku.

Byla a je další závazná zásada, že nové technologické metody musí v celkovém pohledu zlepšit jakost piva vyrobeného v daném pivovaru a zvýšit tržní jeho jakost.

Metody zkvašování za zvýšeného taktu se sice více používají. Jsou vyvážené a zavedeny různé varianta technologického postupu, jedná se z řešení, která spočívají ve využití ležáckých tanků k boulíčovému kvašení, je metodou kvašení ve spojených tancích.

Proces prokvašování mldění obvykle probíhá v klasických kvašových kádích a mldě pivo pok dokovačuje v ležáckých tancích, upravených pro tento postup, jak je topatrný z obr. 2 a 3. Ležácké tanky určené ke kvašení jsou v oddělené části ležáckého sklopa, v níž sa udržuje teplota a rozměr 8 až 10 °C. Kvašení probíhá při taktu 0,07 MPa, pouze jeho skupina spojených tanků může být podle uvedených schém schválená pouze jednu netlakový sběrník. Popsaná technika je předmětem polského patentu. Vyuvačovali ji pracovníci Ústavu pro kvasný průmysl.

Tato technika a technologie kvašení má řadu výhod, z nichž jsou nejdůležitější tyto:
- umožňuje lepší využití ležáckých skloplů v mnoha pivovarech, zvláště v menších pivovarech;
- umožňuje zkrácení doby dokovačování piva, protože kvašení za zvýšeného taktu (silcové kapalin a takt v případě prostoru 0,07 MPa) snižuje množství vznikajících vedlejších produktů;
- umožňuje zvýšení výroby piva při nejvýhodnějších výrobních podmínkách;
- umožňuje zvýšení výroby piva v ležáckých kvašnicích v mnoha pivovarech.


Souhrnná správa o opatřeních k zavedení výroby tankového kvašení v pivovarech, postupně realizovaných podle plánu rozvoje, vytvářejících předpoklady pro systematickou modernizaci techniky a technologie se zveřejní na potřebu a podmínky trhu.


V článku je představena analýza právě zde uvedených podmínek a jejich možných důsledků pro konkrétní znečištění prostředí.


The article deals briefly with measures which are being taken in Polish Brewing Industry to intensify all brewing processes. They are introduced stage by stage to realize thus development plans foreseeing systematic modernization of equipment and technology. Modernized industry will meet all demands of expanding market.

Ein zusammenfassender Bericht über die Maßnahmen zur Intensifikation der Malz- und Bierherstellung in der Volksrepublik Polen, die gemäß dem Entwicklungsplan schrittweise realisiert werden und Voraussetzungen für die systematische Modernisierung der Technik und Technologie mit Hinsicht auf die Marktbedarfungen und -forderungen schaffen.