Některé možnosti aplikace technického skla v kvasném průmyslu

Ing. TOMÁŠ BÜRGERMEISTER, Sklárny Kavalier, Praha

(Předneseno na XVIII. Pivovarsko-sladařském semináři v Plzni 5. 11. 1976)

Účastníci semináře byli seznamáni s akc, která se uskutečnila v minulém roce ve spolupráci mezi Západočeskými pivovary, VVVTS a Sklárnami Kavalier. Pro potřeby pivovarů byla ve Sklárnách Kavalier vyvinuta skleněná aparáatura, která byla provozně odzkoušena v chěbském závodu ZPC. Tento úkol byl ve VVVTS řešen v rámci úkolu „Nádoby o velkých světlostech“, a proto byl navázán kontakt se Západočeskými pivovary Plzeň. Odpořádání pracovního navrhového uplatnění skla v pivovářské praxi při propagaci kvasiné. Dosavadní zařízení s montovaného čeli jsou vyrobeny buď z mědi, nebo z nerezovací oceli. Toto řešení je značně nákladné, a proto často nedoráží a kromě toho jde o úzkoprofilové materiály. Úvodem je nutno konstatovat, že řešení propagace kvasín v skle a to v aparátách o kapacitách, která je možné dnešní sklářskou technologií zvládnout, je úplně nová myšlenka, která nebyla dosud nikde uskutečněna.

Popis stanice

Přírodní požadavek znáš na aparáturu, jejichž jmenovitý výkon byl 1 000 l, tj. množství mladiny, kterou lze sterilizovat nejdéle, v jednom pracovním cyklu. Pro tento výkon je nutno zajistit skleněné válce o světlosti 800 nebo 1 000 mm. Protože se válce této světlosti zatím u nás nevyvíjely, bylo rozhodnuto použít největší světlost válč, které jsou v současné době k dispozici, tj. 400 mm. Rokuťku na dispozici řešení místnosti, ve které měla být modelová aparáatura postavena, bylo rozhodnuto postavit sterilizátor z jednoho válce Js 400 mm o délce 2 750 mm. Na základě těchto základních technických podmínek bylo navrženo řešení sterilizátoru o obsahu 400 l, což je jmenovitý výkon modelové stanice.

K sterilizaci mladiny slouží sterilizátor, který je sestaven z válce Js 400, upevněného ve vertikální poloze (obr. 1). Horní část válce je uzavřena redukci Js 400 s několika tubusy. Prostředním tubusem o světlosti 50 mm je do válce zavěšena provzdušňovací trubka. Jeden z tubusů Js 23, který je na obvodu redukce, slouží pro přívod vzduchu, čistěného vzduchovým filtrem. Druhým tubusem Js 25 na redukci Js 400 odňáší přebytečný vzduch do lahvového krku, který je zakořeny vodním uzávěrem. Studený část válce Js 400 je zakončena redukcí na 100 mm. Na koncovku Js 100 je napojen výtokový díl, který umožňuje vyprostírení sterilizátoru pouze po přepád, limitovací díl koupála přepádová trubky zasahující do válce. Na přepádovou trubku je napojeno spojovací potrubí mezi sterilizátorem a propagačnou. Touto česou se přívaď pára pro sterilizaci celého zařízení před začátkem provozu. Po ukončení technologického cyklu se stejnou česou, avšak v opačném směru, přepádá sterilizátor mladina do propagačního teplou výtokového dílu, který slouží pro vyprostírání kalů, se přivádí do sterilizátora přefiltrovaná nesterilní mladina. Oheň nesterilní mladiny ve válci Js 400 je řešen jako boční a je zajištěn dvěma skleněnými spirálovými tepelnými výměníky Js 200 o celkové tepelné ploše 5 m². Po ukončení oheňu na sterilizátoru slouží tyto výměníky k chlazení vystřelované mladiny. Přepínání parního oheňu a dvojího chlazení, nejprve vodu technologickou (14 °C) a dále vodou ledovou (4 °C), se reguluje soustavou přívodu a ventilů přístupících k aparáturu. Pro řádné sledování teplot během oheňu a chlazení byla do kolen pod tepelnými výměníky i nad nimi zamontována čidla automatického zapisače teplot

Obr. 1
(průběh teplot v době ohřevu a chlazení je uveden v tab. 1). Rozvod vzduchu pro celou stanici je řešen centrálně s předřazeným redukčním ventilítem seřízeným na maximální přípravný přetlak 0,05 MPa (0,5 at). Skleněné díly jsou spojeny standardními spojovacími materiály s prýžovým těsněním určeným pro potravinářský průmysl. Nosným elementem skleněných dílů je konstrukce svařená z uzavřených profilů, která je doplněna stojanami z trubek a nosnými čelníky běžně používanými u skleněných aparatur. Vzhledem k výšce aparatury (přes 3 m) nejlépe se ve výšce 2 m pracovní plošina, na kterou je přístup po schodech. Jak schody, tak pracovní plošina má ochranné zábradlí. Se zřetelem na zajištění bezpečnosti práce je sterilátor zakrytován ze tří stran do výšky 2,5 m ochrannými deskami z plexiskla.

Tab. 1. Teplotní řežim jednoho technologického cyklu

![Horní tubus vs. syrové tubusy](image.jpg)

Vlastní propagace kvasinek probíhá v propagátorech, což jsou dva zásobníky je 400 s hrdlem zredukovaným na 300 mm se spodní výpustí js 50, každý o obsahu 200 l (obr. 2). Horní výklova stěna je uzavřená profilům, které je kryjí sterilátor s teplotním řešením a výnosem. Oba propagátory jsou umístěny v jedné společné konstrukci. Konstrukce je stejně jako u sterilátoru vyrobena ze svařovaných uzavřených profilů s tří hlavami a držáky určenými pro skládané nosné konstrukce.

Provozní zkušenosti

Zlepšený typ propagátorů

Po ročních zkušenostech s modelovou stanici se začala řešit výhradně jednotka tak, aby bylo možné zvětšit kapacity a zvýšit efektivitu. Na základě požadavků zákazníků by bylo možné vytvořit nový typ propagátora, který by byl vhodný pro úpravu a modernizaci ošetřovacích staničních obvodů. Provozní zkušenosti s novými propagátory ukazují, že nové typy propagátorů mají výhodné účinky na efektivitu a požadavky na zvětšení kapacitních možností. Zlepšení propagátorů vede k zvětšení kapacit a zvýšení efektivnosti obvodů.

Obr. 2

![Ohradní presníček](image2.jpg)
tokový díl na spodní redukci. U sterilátoru je dále pře-
pracována provozušovací trubka a rozvody vzduchu.
Provozušovací trubka není vedena horizontálně, ale je zasa-
zena do tubusu, který je nastaven na výtokový díl
na spodní redukci. Tím odpadá občasnost možných
provozušovacích špatností a také její výroba bude méně náročná. Celý
rozvod vzduchu u sterilátoru je rekonstruován tak, aby
se zjednodušilo ovládání. Ovládací kohouty jsou upraveny
na dosah z podlahy, takže není nutno vystupovat na
konstrukci. U propagátorů je kotlík na 200 l nahrazen
válcem je 600, který je zdola uzavřen redukci a shora
vikem s tubusu. Na tubusu je nasazen rozvod vzduchu ve
stejném provedení jako u propagátorů v modelové stá-
nici.

Věříme, že tyto nové vynikající technické
škály udrží svou výkonnost i ve starších
školách, kde se uvedenou problematikou zabývají.

Bürgermeister, T.: Některé možnosti aplikace technické-
ho skla v kvasném průmyslu. Kvas. prům., 23, 1977, č. 2,
s. 35—37.

Článek se zaměřuje na vzniknoucí skla v pivovarské
praxi při propagaci kvasnic. Pro potřeby pivovarů a dal-
ších pivovarských procesů je využíván speciální
eparatura, která umožňuje přesnou úpravu
SILMAX. V první části je uveden popis modelové stanice
s obsahem 400 l, která sloužila po dobu jednoho roku
v pivovaru Cheb, v němž bylo uvedeno celé
arážení. Výsledky provozních zkoušek jsou shrnuty ve
dochází části. V závěru je popsána nově vybroušená
stanice, která vyhovuje i kapacitním požadavkům, tj. 1 000 l
v jednom
pracovném cyklu.

Bürgermeister, T.: Perspektivy širokého
uplatnění technického skla na
zařízeních broukem

V článku je zvětšena možnost širokého uplatnění
technického skla v pivovarské praxi na
zařízeních. Stále významnější je
rozvozní redukcie, která byla
vybavena pro
provizorní průmysl.